On the periodic intermediate long wave equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 15781
(http://iopscience.iop.org/0305-4470/15/3/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 15:49

Please note that terms and conditions apply.

On the periodic intermediate long wave equation

M J Ablowitz \dagger, A S Fokas \dagger, J Satsuma $\dagger \S$ and Harvey Segur \ddagger
\dagger Clarkson College of Technology, Department of Mathematics and Computer Science, Potsdam, New York 13676, USA
\ddagger Aeronautical Research Associates of Princeton, Inc., 50 Washington Road, PO Box 2229, Princeton, New Jersey 08540, USA

Received 16 June 1981

Abstract

We discuss some properties of a certain physically interesting nonlinear integrodifferential equation with periodic boundary conditions. It is the natural periodic analogue of the intermediate long wave equation, and it provides a periodic analogue of the Benjamin-Ono equation in the appropriate limit. Due to the speciality of the integral operator, the equation admits a Bäcklund transformation, an infinity of motion constants, etc. Two simple periodic solutions are exhibited. Finally we note that the equation may be transformed into more than one kind of bilinear equation.

The so-called intermediate long wave (ILw) equation (Joseph 1977, Kubota et al 1978) can be written in the form ($\delta>0$)

$$
\begin{equation*}
u_{t}+\delta^{-1} u_{x}+2 u u_{x}+(T u)_{x x}=0 \tag{1}
\end{equation*}
$$

on $-\infty<x<\infty$, where

$$
\begin{equation*}
\left.T u=-\frac{1}{2 \delta}\right\}_{-\infty}^{\infty} \operatorname{coth} \frac{\pi}{2 \delta}(x-\xi) u(\xi) \mathrm{d} \xi \tag{2}
\end{equation*}
$$

and the integral is eyaluated in the principal-value sense. The equation can be solved on $(-\infty, \infty)$ via an inverse scattering transform (IST) (Kodama et al 1981), and has the analytical structure associated with such equations (Joseph and Egri 1978, Satsuma et al 1979).

The physical derivation of (1) and (2) as a model of the evolution of long internal waves of moderate amplitude assumes that $u(x)$ has a classical Fourier transform, and that u vanishes as $|x| \rightarrow \infty$. Even so, one may ask whether (1), (2) admit spatially periodic solutions. This was done by Joseph and Egri (1978), Chen and Lee (1979), and Nakamura and Matsuno (1980), using formal algebraic methods. Unfortunately, the solutions so obtained either contain errors or are subject to a limitation that was obscured by these formal methods.

Alternatively, one may seek an evolution equation for long internal waves of moderate amplitude that are spatially periodic. Then a derivation similar to the usual one leads to (1), but in the periodic case (2) is replaced with

$$
\begin{equation*}
T u=\frac{1}{2 L} \int_{-L}^{L} \tilde{T}(x-\xi ; \delta, L) u(\xi) \mathrm{d} \xi \tag{3a}
\end{equation*}
$$

§ Present address: General Education, Miyazaki Medical College, Kiyotaki, Miyazaki 889-16, Japan.
where

$$
\begin{equation*}
\tilde{T}(x ; \delta, L)=-\frac{2 K}{\pi}\left[Z\left(\frac{K x}{L}\right)+d n\left(\frac{K x}{L}\right) c s\left(\frac{K x}{L}\right)\right] . \tag{3b}
\end{equation*}
$$

(Actually, the physical derivation naturally leads to the Fourier representation of \tilde{T}, given in (3c), which is then transformed into (3b).) This derivation also requires that $\int_{-L}^{L} u \mathrm{~d} x=0$, which we always may impose on (1) with (3), because any non-zero mean may be removed by a Galilean transformation: $u^{\prime}=u+\alpha, x^{\prime}=x+2 \alpha t$. In ($3 b$), K denotes the complete elliptic integral of the first kind, $Z(a)$ is Jacobi's zeta function, and $d n(a), c s(a)$ are Jacobian elliptic functions. These all have modulus k, determined by the condition that $K^{\prime}(k) / K(k)=\delta / L$, where $K^{\prime}(k)$ is the associated elliptic integral of the first kind. (All of these functions are discussed by Byrd and Friedman (1971).) The purpose of this note is to discuss some of the mathematical structure of (1) with (3).

An alternative, but very useful, representation of \tilde{T} is its Fourier series,

$$
\begin{equation*}
\tilde{T}(x ; \delta, L)=\mathrm{i} \sum_{n \neq 0} \operatorname{coth}\left(\frac{n \pi \delta}{L}\right) \exp \left(\frac{\mathrm{i} n \pi x}{L}\right) \tag{3c}
\end{equation*}
$$

so that

$$
\begin{equation*}
T u=\mathrm{i} \sum_{n \neq 0} \operatorname{coth}\left(\frac{n \pi \delta}{L}\right) \hat{u}_{n} \exp \left(\frac{\mathrm{i} n \pi x}{L}\right) \tag{3d}
\end{equation*}
$$

where $\left\{\hat{u}_{n}\right\}$ are the Fourier coefficients of u. This representation follows from the identities (cf Byrd and Freidman 1971, $\S \S 905.01$ and 908.51)

$$
\begin{aligned}
& Z(a)=\frac{2 \pi}{K} \sum_{m=1}^{\infty} \frac{q^{m}}{1-q^{2 m}} \sin \left(\frac{m \pi a}{K}\right) \\
& \operatorname{cs}(a) d n(a)=\frac{\pi}{2 K} \cot \frac{\pi a}{2 K}-\frac{2 \pi}{K} \sum_{m=1}^{\infty} \frac{q^{m}}{1+q^{m}} \sin \left(\frac{m \pi a}{K}\right)
\end{aligned}
$$

where $q=\exp \left(-\pi K^{\prime} / K\right)=\exp (-\pi \delta / L)$, and from the formal representation (Gel'fand and Shilov 1964, p 32)

$$
\cot \frac{1}{2} \theta=2 \sum_{m=1}^{\infty} \sin m \theta .
$$

The usual operator on $(-\infty, \infty)$ may be recovered simply by replacing the sum in ($3 d$) with an integral and rescaling. Similarly, we may recover (2) from (3) by letting $L \rightarrow \infty, \delta$ fixed. Then $k \rightarrow 1, K \rightarrow \pi L / 2 \delta$, and one may show that

$$
\begin{equation*}
\frac{1}{2 L} \tilde{T}(x ; \delta, L \rightarrow \infty) \rightarrow \frac{1}{2 \delta} \operatorname{coth} \frac{\pi x}{2 \delta} \tag{4a}
\end{equation*}
$$

which reproduces (2). On the other hand, for $\delta \rightarrow \infty, L$ fixed, we have $k \rightarrow 0, K \rightarrow \frac{1}{2} \pi$, and

$$
\begin{equation*}
\tilde{T}(x ; \delta \rightarrow \infty, L) \rightarrow-\cot \pi x / 2 L \tag{4b}
\end{equation*}
$$

This is the well known Hilbert kernel on ($-L, L$). With this kernel, (1) is the natural periodic extension of the Benjamin-Ono equation (Benjamin 1967, Ono 1975). As one would expect, (1) with (3) reduces to the (periodic) KdV equation if $\delta \rightarrow 0, L$ fixed.

If $u(x)$ is periodic with period $2 L$ and with zero mean, then $(T u)$ according to (2) and to (3) are identical. That this is so may be seen by rewriting (2) in its Fourier transform representation, and recalling that the FT of a periodic function is a sum of Dirac delta
functions (Gel'fand and Shilov 1964). Thus (1) with (3) may be regarded simply as the most natural way to write the ILW equation when periodic solutions are of interest.

The operator T given in (3) is the most general periodic operator we have found which satisfies the ' T conditions':

$$
\begin{align*}
& T(u T v+v T u)=T u T v-u v \tag{T1}\\
& \int_{-\infty}^{\infty}(u T v+v T u) \mathrm{d} x=0 \tag{T2}
\end{align*}
$$

where u, v have zero mean. We find that ($T 1$), ($T 2$) are necessary conditions on the T operator in order for (1) to have more than the standard number of conserved quantities. With these conditions the above evolution equations can be expected to be in the IST class. Condition ($T 2$) follows from the fact that $T(x)$ is an odd function. To establish ($T 1$) we use the representation ($3 c$). Calling $\hat{T}_{n}=\mathrm{i}$ coth $n \pi \delta / L$, and \hat{u}_{n}, \hat{v}_{n}, the Fourier coefficients of u, v respectively, assuming $\hat{u}_{0}=\hat{v}_{0}=0$ (i.e., zero mean) and using the convolution theorem, then

$$
\begin{align*}
T(u T v)= & \sum_{n=-\infty}^{\infty} \hat{T}_{n} \sum_{m=-\infty}^{\infty} \hat{T}_{m} \hat{v}_{n-m} \hat{u}_{n-m} \exp \left(\frac{\mathrm{i} n \pi x}{L}\right) \\
= & \sum_{m} \hat{u}_{m} \sum_{n} \hat{T}_{n} \hat{T}_{n-m} \hat{v}_{n-m} \exp \left(\frac{\mathrm{i} n \pi x}{L}\right) \\
= & -\sum_{m} \hat{u}_{m} \sum_{n} \hat{v}_{n-m} \exp \left(\frac{\mathrm{i} n \pi x}{L}\right)-\sum_{m} \hat{u}_{m} \sum_{n} \hat{T}_{m} \hat{T}_{n} \hat{v}_{n-m} \exp \left(\frac{\mathrm{i} n \pi x}{L}\right) \\
& +\sum_{m} \hat{u}_{m} \sum_{n} \hat{T}_{m} \hat{T}_{n-m} \hat{v}_{n-m} \exp \left(\frac{\mathrm{i} n \pi x}{L}\right) \\
= & -u(x) v(x)-T(v T u)+(T u)(T v) \tag{5}
\end{align*}
$$

where we have used the identity

$$
\operatorname{coth} A \operatorname{coth} B=1+\operatorname{coth}(A-B)(-\operatorname{coth} A+\operatorname{coth} B)
$$

The order of summation in (5) may be interchanged if $\Sigma\left|\hat{u}_{n}\right|, \Sigma\left|\hat{v}_{n}\right|$ exist. This establishes (T1).

The need for the T conditions can be seen from the following. The usual ilw equation on $(-\infty, \infty)$ was considered by Satsuma et al (1979). They showed that the derivations of the constants of motion and of the Bäcklund transformation do not depend on the specific kernel of T, so long as T satisfies conditions ($T 1$) and ($T 2$). This implies that these formulae will remain valid for equation (1) with (3) since the T conditions are satisfied. Actually one easily verifies (by differentiation) that the constants of motion given by Satsuma et al (1979) are also constants of motion of (1) with (3).

One may use the generalised Miura transformation, $u=\frac{1}{2}\left(\hat{\lambda}-V_{x}+\mathrm{i} T V_{x}+\hat{\mu} \mathrm{e}^{\mathrm{i} V}\right)$ to derive a generalisation of the so-called modified ILw equation. Namely if $\tilde{K}[u]=0$ represents (1), and $\dot{M}[v]=V_{t}+(1 / \delta+\hat{\lambda}) V_{x}+(T V)_{x x}+\hat{\mu} V_{x} \mathrm{e}^{\mathrm{i} V}+\mathrm{i} V_{x}(T V)_{x}=0$, then using the T conditions we have

$$
\begin{equation*}
\tilde{K}[u]=\theta \tilde{M}[v] \tag{6}
\end{equation*}
$$

where

$$
\theta=\left(-\partial_{x}+\mathrm{i} T \partial_{x}+\mathrm{i} \hat{\mu} \mathrm{e}^{\mathrm{i} V}\right) .
$$

Similarly it can be proven, by using the results of Fokas and Fuchssteiner (1980) (which also apply to the above Miura-type transformation) that (1) admits an auto-Bäcklund transformation if and only if ($T 1$), (T2) are satisfied.

The IST pair used by Kodama et al (1981) is also valid in the period problem. However, the simple compatibility argument does not indicate the importance of the T conditions. Namely, consider a linear scattering problem and a sequence of associated time evolutions of the form

$$
\begin{align*}
& \mathrm{i} \psi_{x}^{+}+(u-\lambda) \psi^{+}=\mu \psi^{-} \tag{7a}\\
& \psi_{t}^{ \pm}=Q_{n}^{ \pm} \psi^{ \pm} \quad n=1,2, \ldots \tag{7b}
\end{align*}
$$

(7a) is to be thought of as a differential Riemann-Hilbert problem to find $\psi^{ \pm}$(i.e., $\psi^{ \pm}$ are the boundary values of certain analytic functions) given an appropriate function $u(x)$. For each n, compatibility of ($7 a$) and ($7 b$) yields an evolution equation; namely, requiring $\psi_{x t}^{ \pm}=\psi_{t x}^{ \pm}$; and setting all coefficients of $\psi^{+}, \psi^{-}, \psi_{x}^{-}, \psi_{x x}^{-}$, etc, to zero after using (7a) to eliminate derivatives of ψ^{+}, gives an algorithmic procedure to determine compatible equations. The equivalent to the first two equations of the Kdv hierarchy are obtained as follows. First, $Q_{1}^{ \pm}=\partial_{x}+A^{ \pm}$, whereupon we find $A^{+}-A^{-}=0$. Taking $A^{ \pm}=A_{0}=$ constant, the compatible evolution equation is $u_{t}=u_{x}$. Second, $Q_{2}^{ \pm}=$ $\mathrm{i} \partial_{x}^{2}+\mathrm{i} B^{ \pm} \partial_{x}+\mathrm{i} A^{ \pm}$, we find $B^{+}-B^{-}=0, \quad A^{+}-A^{-}=-2 \mathrm{i} u_{x}$. Taking $B^{ \pm}=B_{0}=$ $\mathrm{i}(2 \lambda+1 / \delta)=\mathrm{constant}, A^{ \pm}= \pm \mathrm{i} u_{x}-(T u)_{x}$, the compatible evolution equation is (1), without need for the T conditions. The underlying reason why such conditions must be added, and whether, in fact, (3) is the most general singular integral operator satisfying $(T 1),(T 2)$ are open questions. Matsuno (1980) has given a different algorithm to derive such a hierarchy of equations.

Next we consider some special solutions of (1) with (3). For a wave of permanent form, $\partial_{t} \rightarrow-c \partial_{x}$, and (1) may be integrated once to

$$
\begin{equation*}
\left(\delta^{-1}-c\right) u+u^{2}+(T u)_{x}+A=0 \tag{8}
\end{equation*}
$$

with A constant. It has been claimed (Joseph and Egri 1978, Chen and Lee 1979) that

$$
\begin{equation*}
u(x-c t)=\frac{-(n \pi / L) \sinh (n \pi \delta / L)}{\cosh (n \pi \delta / L)+\cos [n \pi(x-c t) / L]} \tag{9a}
\end{equation*}
$$

is a solution of (8). Its Fourier series representation is

$$
\begin{equation*}
u(\xi)=-\frac{n \pi}{L}\left[1+2 \sum_{1}^{\infty}(-1)^{m} \exp \left(-\frac{m n \pi \delta}{L}\right) \cos \left(\frac{m n \pi \xi}{L}\right)\right] . \tag{9b}
\end{equation*}
$$

That (9) does not solve (8) may be seen by computing $\partial u / \partial \delta$ from ($9 a$) and ($9 b$), and $T u$ from (3d), because, as the reader may verify by direct calculation: $\partial u / \partial \delta=-\partial(T u) / \partial x$. The correct solution is

$$
\begin{equation*}
u(x-c t)=\frac{-(n \pi / L) \sinh (n \pi \delta / L)}{\cosh (n \pi \delta / L)+\cos [(n \pi / L)(x-c t-\mathrm{i} \phi)]} \tag{10a}
\end{equation*}
$$

where $\phi<-\delta$. Its Fourier series is

$$
\begin{equation*}
u(\xi)=\frac{2 n \pi}{L} \sum_{1}^{\infty}(-1)^{m} \sinh \left(\frac{m n \pi \delta}{L}\right) \exp \left(\frac{\mathrm{i} m n \pi(\xi-\mathrm{i} \phi)}{L}\right) \tag{10b}
\end{equation*}
$$

and its validity may be verified by computing $\partial u / \partial \delta$ from (10a) and (10b). This solution
is complex valued. (The Fourier representations in ($9 b$) and (10b) differ because the transformation $x \rightarrow x-\mathrm{i} \phi, \phi<\delta$, moves ξ outside the radius of convergence of ($9 b$).)

More generally, periodic solutions may be obtained systematically via Hirota's method, revising slightly the methods of Chen and Lee (1979), Nakamura and Matsuno (1980) and Satsuma and Ablowitz (1980). Let $f^{ \pm}(x) \equiv f(x \mp \mathrm{i} \delta)$, let $f(x)$ be periodic (2L) and let $f(z)$ be analytic in the rectangle: $-L \leqslant \operatorname{Re}(z) \leqslant L,-\delta \leqslant \operatorname{Im}(z) \leqslant \delta$. Then by integrating $\int \tilde{T}(x-\zeta+\mathrm{i} \delta) f(\zeta) \mathrm{d} \zeta$ around this rectangle, one finds that

$$
\begin{equation*}
\frac{1}{2 L} \int_{-L}^{L} \tilde{T}(x-z ; \delta, L)\left[f^{+}(z)-f^{-}(z)\right] \mathrm{d} z=\mathrm{i}\left[f^{+}(x)+f^{-}(x)\right]+J_{0} \tag{11}
\end{equation*}
$$

where J_{0} is an unimportant constant. It follows that if

$$
\begin{equation*}
u(x)=\mathrm{i}\left[f^{-}(x)-f^{-}(x)\right] \tag{12}
\end{equation*}
$$

where

$$
f^{ \pm}(x)=\partial_{x}\left(\ln F^{ \pm}\right)
$$

and if $f(x)$ is properly analytic, then (1) with (3) becomes a bilinear equation

$$
\begin{equation*}
\left(\mathrm{i} \mathrm{D}_{t}+\mathrm{i} \delta^{-1} \mathrm{D}_{x}-\mathrm{D}_{x}^{2}+A\right) F^{+} \cdot F^{-}=0 \tag{13}
\end{equation*}
$$

with the usual notation (e.g. $\mathrm{D}_{x} a .\left.b \equiv\left(\partial_{x}-\partial_{x^{\prime}}\right) a(x) b\left(x^{\prime}\right)\right|_{x^{\prime}=x}$), and $A=A(t)$. We emphasise that only those solutions of (13) that are analytic in the rectangle yield periodic solutions of (1), a fact that was overlooked previously.

The simplest real-valued solution of (1) with (3) was given by Nakamura and Matsuno (1980). It may be written in the form

$$
\begin{equation*}
\left.u(\xi ; m)=\frac{\mathrm{i} K(m)}{L}\left[Z\left(\frac{K(m)}{L}(\xi-\mathrm{i} \delta) ; m\right)\right)-Z\left(\frac{\boldsymbol{K}(m)}{L}(\xi+\mathrm{i} \delta) ; m\right)\right] \tag{14a}
\end{equation*}
$$

where $\xi=x-c t+x_{0}$, and m is the modulus. The analyticity condition is that

$$
\begin{equation*}
\delta / L<K^{\prime}(m) / K(m) \tag{14b}
\end{equation*}
$$

or, because $\delta / L=K^{\prime}(k) / K(k)$, that the modulus of T exceeds the modulus of the solution. The wave speed is a complicated function of m, δ and L, and is given implicitly by Nakamura and Matsuno (1980).

Finally, we note that (13) is not the enly 'bilinear' equation that may be obtained from (1), (3). For example, let $f(z)$ have a real period ($2 L$), and be analytic in $-L \leqslant \operatorname{Re}(z) \leqslant L,-\delta \leqslant \operatorname{Im}(z) \leqslant \delta$ except for two poles at $z=z_{0}$ and $z_{0}^{*}\left(0<\operatorname{Im}\left(z_{0}\right)<\delta\right)$ with residues b and b^{*}. Then the integral of $\int \tilde{T}(x-\zeta+\mathrm{i} \delta) f(\zeta) \mathrm{d} \zeta$ around the rectangle yields
$\left.\frac{1}{2 L}\right\}_{-L}^{L} \tilde{T}(x-z)\left[f^{+}(z)-f^{-}(z)\right] \mathrm{d} z=\mathrm{i}\left[f^{+}(x)+f^{-}(x)\right]+J_{0}$

$$
\begin{equation*}
-\frac{\pi \mathrm{i}}{L}\left[b \tilde{T}\left(x-z_{0}+\mathrm{i} \delta\right)+b^{*} \tilde{T}\left(x-z_{0}^{*}+\mathrm{i} \delta\right)\right] \tag{15}
\end{equation*}
$$

instead of (11). In this case, (12) changes (1) with (3) into
$\left\{\mathrm{iD}_{t}+(\mathrm{i} / \delta) \mathrm{D}_{x}-\mathrm{D}_{x}^{2}+A+(\pi / L)\left[b \partial_{x} \tilde{T}\left(x-z_{0}+\mathrm{i} \delta\right)+b^{*} \partial_{x} \tilde{T}\left(x-z_{0}^{*}+\mathrm{i} \delta\right)\right]\right\} F^{+} \cdot F^{-}=0$.

The analyticity requirement is that $F(z)$ should be analytic in the usual rectangle except for simple branch points at z_{0} and z_{0}^{*}, so that $f^{ \pm}$has poles. We have not determined whether (15) yields any solutions of (1), (3) that are not available via (13).

This work was partially supported by the Air Force Office of Scientific Research, USAF and by the Office of Naval Research, Mathematics and Fluid Dynamics Programs.

References

Benjamin T B 1967 J. Fluid Mech. 29559
Byrd P F and Friedman M D 1971 Handbook of Elliptic Integrals for Scientists and Engineers (New York: Springer)
Chen H H and Lee Y C 1979 Phys. Rev. Lett. 43264
Fokas A S and Fuchssteiner B 1980 Bäcklund Transformations for Hereditary Symmetries, Nonlinear Analysis, TMA
Gel'fand I M and Shilov G 1964 Generalized Functions, Properties and Operations vol 1 (New York: Academic)
Joseph R I 1977 J. Phys. A: Math. Gen. 10 L225
Joseph R I and Egri R 1978 J. Phys. A: Math. Gen. 11 L97
Kodama Y, Satsuma J and Ablowitz M J 1981 Phys. Rev. Lett. 46687
Kubota T, Ko D R S and Dobbs D 1978 J. Hydronaut. 12157
Matsuno Y 1980 J. Phys. Soc. Japan 481024
Nakamura A and Matsuno Y 1980 J. Phys. Soc. Japan 48653
Ono H 1975 J. Phys. Soc. Japan 391082
Satsuma J and Ablowitz M J 1980 in Nonlinear Partial Differential Equattions in Engineering and Applied Science ed R L Sternberg, A J Kalinowki and J S Papadakis (New York: Marcel Dekker) p 397
Satsuma J, Ablowitz M J and Kodama Y 1979 Phys. Lett. 73A 283

