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On the periodic intermediate long wave equation 
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?Clarkson College of Technology, Department of Mathematics and Computer Science, 
Potsdam, New York 13676, USA 
$Aeronautical Research Associates of Princeton, Inc., 50 Washington Road, PO Box 2229, 
Princeton, New Jersey 08540, USA 

Received 16 June 1981 

Abstract. We discuss some properties of a certain physically interesting nonlinear integro- 
differential equation with periodic boundary conditions. It is the natural periodic analogue 
of the intermediate long wave equation, and it provides a periodic analogue of the 
Benjamin-Ono equation in the appropriate limit. Due to the speciality of the integral 
operator, the equation admits a Backlund transformation, an infinity of motion constants, 
etc. Two simple periodic solutions are exhibited. Finally we note that the equation may be 
transformed into more than one kind of bilinear equation. 

The so-called intermediate long wave (ILW) equation (Joseph 1977, Kubota et al 1978) 
can be written in the form (8  > 0) 

(1) u ~ + S - ~ U ,  +2uux +(Tu),, = 0 

on -CO < x < CO, where 

and the integral is eyaluated in the principal-value sense. The equation can be solved on 
(-CO, CO) via an inverse scattering transform (IST) (Kodama et a1 1981), and has the 
analytical structure associated with such equations (Joseph and Egri 1978, Satsuma et a1 
1979). 

The physical derivation of (1) and (2) as a model of the evolution of long internal 
waves of moderate amplitude assumes that u ( x )  has a classical Fourier transform, and 
that U vanishes as / X I + C O .  Even so, one may ask whether (l),  (2) admit spatially 
periodic solutions. This was done by Joseph and Egri (1978), Chen and Lee (1979), and 
Nakamura and Matsuno (1980), using formal algebraic methods. Unfortunately, the 
solutions so obtained either contain errors or are subject to a limitation that was 
obscured by these formal methods. 

Alternatively, one may seek an evolution equation for long internal waves of 
moderate amplitude that are spatially periodic. Then a derivation similar to the usual 
one leads to (l), but in the periodic case (2) is replaced with 
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where 

(Actually, the physical derivation naturally leads to the Fourier representation of f', 
given in ( 3 c ) ,  which is then transformed into (3b).)  This derivation also requires that s-f U dx = 0, which we always may impose on (1) with (3 ) ,  because any non-zero mean 
may be removed by a Galilean transformation: U' = U +a, x '=  x +2at.  In ( 3 6 ) ,  K 
denotes the complete elliptic integral of the first kind, Z ( a )  is Jacobi's zeta function, and 
dn (a),  cs(a j are Jacobian elliptic functions. These all have modulus k, determined by 
the condition that K'(k) /K(k)  = S/L, where K'(k) is the associated elliptic integral of 
the first kind. (All of these functions are discussed by Byrd and Friedman (1971).) The 
purpose of this note is to discuss some of the mathematical structure of (1) with (3). 

An alternative, but very useful, representation of is its Fourier series, 
(n;s) (in?) 

F ( x ;  6, L) = i 1 coth - exp - 
n+O 

so that 

Tu = i 1 coth( y7 I;,, exp( F) 
nit0 

i 3 c i  

where {&} are the Fourier coefficients of U. This representation follows from the 
identities (cf Byrd and Freidman 1971, §§ 905.01 and 908.51) 

2r q'" 
Z ( a j = -  C -sin 

cs(a)dn(a)=-cot--- 1 y s i n  

K m = i  1-q 

7T r a  2 r  q m  
2K 2K K ",=I l + q  

where q = exp(-rK'/K) = exp(-vS/L), and from the formal repres'entation (Gel'fand 
and Shilov 1964, p 32)  

30 

c o t i e = 2  sin me. 
m = l  

The usual operator on (--CO, 00) may be recovered simply by replacing the sum in ( 3 4  
with an integral and rescaling. Similarly, we may recover ( 2 )  from ( 3 )  by letting L + -CO, S 
fixed. Then k -* 1, K + r L / 2 S ,  and one may show that 

1 1 7T.X 
-F(x;S,L+0O)+-COth- 
2 L  2 s  2s 

1 which reproduces (2) .  On the other hand, for S +CO, L fixed, we have k + 0, K + m, 
and 

(4b)  

This is the well known Hilbert kernel on (-L, L) .  With this kernel, (1) is the natural 
periodic extension of the Benjamin-Ono equation (Benjamin 1967, Ono 1975). As 
one would expect, (1) with ( 3 )  reduces to the (periodic) Kdv equation if S + 0, L fixed. 

If U (x) is periodic with period 2 L  and with zero mean, then (Tu) according to ( 2 )  and 
to ( 3 )  are identical. That this is so may be seen by rewriting (2) in its Fourier transform 
representation, and recalling that the FT of a periodic function is a sum of Dirac delta 

f ' ( x  ; s -* CO, L )  + -cot r x / 2 L .  
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functions (Gel’fand and Shilov 1964). Thus ( 1 )  with ( 3 )  may be regarded simply as the 
most natural way to write the ILW equation when periodic solutions are of interest. 

The operator T given in ( 3 )  is the most general periodic operator we have found 
which satisfies the ‘ T  conditions’: 

T(uTv + V T U )  = TUTV - uv ( T I )  

(T2)  

where U, v have zero mean. We find that ( T  l ) ,  ( T 2 )  are necessary conditions on the T 
operator in order for (1) to have more than the standard number of conserved 
quantities. With these conditions the above evolution equations can be expected to be 
in the IST class. Condition ( T 2 )  follows from the fact that T ( x )  is an odd function. To 
establish ( T l )  we use the representation (3c) .  Calling f,, = i coth n d / L ,  and ii,,, &, the 
Fourier coefficients of U, v respectively, assuming Go = Go = 0 (i.e., zero mean) and using 
the convolution theorem, then 

m I-, (uTv + vTu) dx = 0 

m n  \ L /  m n 

i n m  +E U^, 1 f m f n - m ~ n - m  e x p ( T )  
m n  

= - U (X)V (x) - T ( v TU ) + (TU )( Tv)  

where we have used the identity 

coth A coth B = 1 + coth(A -B)(-coth A + coth B ) .  

The order of summation in ( 5 )  may be interchanged if ZlU*,,l, ZlV̂ ,,l exist. This establishes 
( T I ) .  

The need for the T conditions can be seen from the following. The usual ILW 
equation on (-a, CO) was considered by Satsuma et a1 (1979). They showed that the 
derivations of the constants of motion and of the Backlund transformation do not 
depend on the specific kernel of T, so long as T satisfies conditions ( T l )  and (T2) .  This 
implies that these formulae will remain valid for equation ( 1 )  with ( 3 )  since the T 
conditions are satisfied. Actually one easily verifies (by differentiation) that the 
constants of motion given by Satsuma et a1 (1979) are also constants of motion of ( 1 )  
with ( 3 ) .  

One may use the generalised Miura transformation, U = ;(i - V, + iTV, + & eiv) to 
derive a generalisation of the so-called modified ILW equation. Namely if g [ u ]  = 0 
represents ( l ) ,  and &?[VI= V t + ( l / S + ~ ) V x + ( T V ) , , + & V x  e i V + i V x ( T V ) ,  = 0 ,  then 
using the T conditions we have 

~ [ u I =  & [ V I  (6) 
where 

8 =(-ax +iTa, +i& eiv). 
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Similarly it can be proven, by using the results of Fokas and Fuchssteiner (1980) (which 
also apply to the above Miura-type transformation) that (1) admits an auto-Backlund 
transformation if and only if (Tl) ,  (T2) are satisfied. 

The IST pair used by Kodama et a1 (1981) is also valid in the period problem. 
However, the simple compatibility argument does not indicate the importance of the T 
conditions. Namely, consider a linear scattering problem and a sequence of associated 
time evolutions of the form 

i$; + ( U  -A)** = p/ -  ( 7 a )  

rL: = QZ4* n = 1 , 2 , .  . . (7b) 

(7a )  is to be thought of as a differential Riemann-Hilbert problem to find JI' (i.e., 4' 
are the boundary values of certain analytic functions) given an appropriate function 
u ( x ) .  For each n, compatibility of (7a) and (7b) yields an evolution equation; namely, 
requiring t,bzr = +E ; and setting all coefficients of JI*, q-, I);, I);,, etc, to zero after using 
(7a) to eliminate derivatives of IJ', gives an algorithmic procedure to determine 
compatible equations. The equivalent to the first two equations of the K d v  hierarchy 
are obtained as follows. First, Q: = a, +A*, whereupon we find A'-A- = 0. Taking 
A*  =Ao  = constant, the compatible evolution equation is ut = U,. Second, Q,' = 
ia; + iB'a, + iA', we find B+ - B- = 0, A' - A -  = -2iu,. Taking B" = Bo = 
i(2A + 1/S)  =constant, A* = fiu, -(Tu),, the compatible evolution equation is (11, 
without need for the T conditions. The underlying reason why such conditions must be 
added, and whether, in fact, (3) is the most general singular integral operator satisfying 
( T l ) ,  (T2) are open questions. Matsuno (1980) has given a different algorithm to 
derive such a hierarchy of equations. 

Next we consider some special solutions of (1) with (3). For a wave of permanent 
form, a, + -ca,, and (1) may be integrated once to 

(6 - c ) U  + U + ( TU ) x  + A  = o (8) 

with A constant. It has been claimed (Joseph and Egri 1978, Chen and Lee 1979) that 

-(n?r/L) sinh(n?rS/L) 
cosh(n?rS/l) + cos[n.n(x - c t ) /L]  u ( x - c t ) =  

is a solution of (8). Its Fourier series representation is 

That (9) does not solve (8) may be seen by computing auld6 from (9a) and (9b), and Tu 
from ( 3 4 ,  because, as the reader may verify by direct calculation: aula8 = -a(Tu)/ax. 
The correct solution is 

-( n.n/ L ) sinh(n?rS/ L) 
cosh(n.nS/l) + cos[(n?r/l)(x - ct -iq5)] 

u(x  - c t )  = 

where q5 < -6. Its Fourier series is 

U ( [ )  = __ 2n?r (-l)m sinh ( m n d )  - exP (imn?r([ L - iq5)) ( l o b )  
L 1  L 

and its validity may be verified by computing aulas from ( loa)  and ( lob) .  This solution 
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is complex valued. (The Fourier representations in (9b) and ( l o b )  differ because the 
transformation x + x - iq5, q5 < S, moves [ outside the radius of convergence of (9b).) 

More generally, periodic solutions may be obtained systematically via Hirota's 
method, revising slightly the methods of Chen and Lee (1979), Nakamura and Matsuno 
(1980) andsatsuma and Ablowitz (1980). Letf*(x) = f ( x  r i a ) ,  letf(x) be periodic (215) 
and let f ( z )  be analytic in the rectangle: -L s Re(z) s L, -8 s Im(z) s S. Then by 
integrating j f ( x  - l+ iS)f(l)dl  around this rectangle, one finds that 

L 

f ( x - z ;  S, L)[f+(z)-f-(z)]dz = i [ f+(x)+f- (x) l+J~  (11) 2L - L  

where Jo is an unimportant constant. It follows that if 

u ( x )  =i[f-(x)-f-(x)l (12) 

f * ( x )  = a,(ln F*), 

(iD,+iS-'D,-D~+A)F'.F-=O (13) 

where 

and if f ( x )  is properly analytic, then (1) with (3) becomes a bilinear equation 

with the usual notation (e.g. D, a.b = (a, -a,,)a(x)b(x')l,,,,), and A = A ( t ) .  We 
emphasise that only those solutions of (13) that are analytic in the rectangle yield 
periodic solutions of (l), a fact that was overlooked previously. 

The simplest real-valued solution of (1) with (3) was given by Nakamura and 
Matsuno (1980). It may be written in the form 

U([; m ) = - [ Z ( F ( [ - i S ) ;  iK(m) m)) - Z ( y ( [ + i S ) ;  m)] (14a) 
L 

where [ = x - ct + xo, and m is the modulus. The analyticity condition is that 

S/L < K'(m)/K(m) (14b) 

or, because S/L = K'(k)/K(k),  that the modulus of T exceeds the modulus of the 
solution. The wave speed is a complicated function of m, 8 and L, and is given implicitly 
by Nakamura and Matsuno (1980). 

Finally, we note that (13) is not the enly 'bilinear' equation that may be obtained 
from (l), (3). For example, let f(z) have a real period (2L), and be analytic in 
-L s Re(z) s L, -8 s Im(z) s S except for two poles at z = zo and zg (0 < Im(zo) < 8 )  
with residues b and b*. Then the integral of ?(x  - 5 + iS)f( l )dl  around the rectangle 
yields 

tri 
L 

- - [ b F ( x  -zo+ia)+b*F(x -2; +is)]  

i.nstead of (11). In this case, (12) changes (1) with (3) into 
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The analyticity requirement is that F ( z )  should be analytic in the usual rectangle except 
for simple branch points at zo and z:, so that f' has poles. We have not determined 
whether (15) yields any solutions of (l), (3) that are not available via (13). 

This work was partially supported by the Air Force Office of Scientific Research, USAF 
and by the Office of Naval Research, Mathematics and Fluid Dynamics Programs. 
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